首页 | 本学科首页   官方微博 | 高级检索  
     


Sublinear summation of afferent inputs to the nucleus accumbens in the awake rat
Authors:John A. Wolf  Leif H. Finkel   Diego Contreras
Affiliation:Departments of Neuroscience;and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
Abstract:The mechanisms by which the nucleus accumbens integrates afferent input from limbic and cortical structures have been influential in the development of models of psychiatric disorders such as schizophrenia. Previous studies of the response of nucleus accumbens (Nacb) cells to the stimulation of afferent inputs from hippocampus (HC) and prefrontal cortex (PFC) have demonstrated that PFC throughput can be modulated by preceding HC input. Examination of the post-synaptic potential size has suggested, however, that summation of these inputs is sublinear. All studies to date examining Nacb integration of inputs via stimulation of afferents have been performed in the anaesthetized rat. The present experiments compare the response of Nacb cells to different combinations of PFC and HC stimulation in awake and isoflurane-anaesthetized rats that were chronically implanted with both stimulating and recording electrodes. The results of these experiments suggest that summation of afferent input in the Nacb of the awake rat is predominantly sublinear, with only a minority of neurons demonstrating modulation of PFC inputs by the HC in the awake or the anaesthetized animal. The response profile of many cells changed during anaesthesia when compared to the awake condition, and on average showed suppression to PFC input 50 and 150 ms following HC stimulation while under deep isoflurane anaesthesia. These results suggest that sublinear integration of afferent input from the PFC and HC is the dominant mode of integration of Nacb cells in the awake animal, which has implications for corticostriatal models of psychiatric dysfunction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号