首页 | 本学科首页   官方微博 | 高级检索  
检索        


Long‐term plasticity of glutamatergic input from the subthalamic nucleus to the entopeduncular nucleus
Authors:Lilach Gorodetski  Reut Zeira  Hagar Lavian  Alon Korngreen
Institution:1. The Mina and Everard Goodman Faculty of Life Sciences, Bar‐Ilan University, Ramat Gan, Israel;2. The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar‐Ilan University, Ramat Gan, Israel
Abstract:The hyperdirect pathway of the basal ganglia bypasses the striatum, and delivers cortical information directly to the subthalamic nucleus (STN). In rodents, the STN excites the two output nuclei of the basal ganglia, the entopeduncular nucleus (EP) and the substantia nigra reticulata (SNr). Thus, during hyperdirect pathway activation, the STN drives EP firing inhibiting the thalamus. We hypothesized that STN activity could induce long‐term changes to the STN‐>EP synapse. To test this hypothesis, we recorded in the whole‐cell mode from neurons in the EP in acute brain slices from rats while electrically stimulating the STN. Repetitive pre‐synaptic stimulation generated modest long‐term depression (LTD) in the STN‐>EP synapse. However, pairing EP firing with STN stimulation generated robust LTD that manifested for pre‐before post‐as well as for post‐ before pre‐synaptic pairing. This LTD was highly sensitive to the time difference and was not detected at a time delay of 10 ms. To investigate whether post‐synaptic calcium levels were important for LTD induction, we made dendritic recordings from EP neurons that revealed action potential back‐propagation and dendritic calcium transients. Buffering the dendritic calcium concentration in the EP neurons with EGTA generated long term potentiation instead of LTD. Finally, mild LTD could be induced by post‐synaptic activity alone that was blocked by an endocannabinoid 1 (CB1) receptor blocker. These results thus suggest there may be an adaptive mechanism for buffering the impact of the hyperdirect pathway on basal ganglia output which could contribute to the de‐correlation of STN and EP firing.
Keywords:basal ganglia  entopeduncular nucleus  glutamate receptors  long‐term plasticity  subthalamic nucleus
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号