首页 | 本学科首页   官方微博 | 高级检索  
     


Polarity and intracellular compartmentalization of Drosophila neurons
Authors:Melissa M Rolls  Daisuke Satoh  Peter J Clyne  Astra L Henner  Tadashi Uemura  Chris Q Doe
Affiliation:1. The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, CB2 1QN, Cambridge, UK
2. Institute of Molecular Biology, Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, 97403, Eugene, OR, USA
Abstract:

Background

The choice of a stem cell to divide symmetrically or asymmetrically has profound consequences for development and disease. Unregulated symmetric division promotes tumor formation, whereas inappropriate asymmetric division affects organ morphogenesis. Despite its importance, little is known about how spindle positioning is regulated. In some tissues cell fate appears to dictate the type of cell division, whereas in other tissues it is thought that stochastic variation in spindle position dictates subsequent sibling cell fate.

Results

Here we investigate the relationship between neural progenitor identity and spindle positioning in the Drosophila optic lobe. We use molecular markers and live imaging to show that there are two populations of progenitors in the optic lobe: symmetrically dividing neuroepithelial cells and asymmetrically dividing neuroblasts. We use genetically marked single cell clones to show that neuroepithelial cells give rise to neuroblasts. To determine if a change in spindle orientation can trigger a neuroepithelial to neuroblast transition, we force neuroepithelial cells to divide along their apical/basal axis by misexpressing Inscuteable. We find that this does not induce neuroblasts, nor does it promote premature neuronal differentiation.

Conclusion

We show that symmetrically dividing neuroepithelial cells give rise to asymmetrically dividing neuroblasts in the optic lobe, and that regulation of spindle orientation and division symmetry is a consequence of cell type specification, rather than a mechanism for generating cell type diversity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号