首页 | 本学科首页   官方微博 | 高级检索  
检索        


NMDA lesions of Ammon's horn and the dentate gyrus disrupt the direct and temporally paced homing displayed by rats exploring a novel environment: evidence for a role of the hippocampus in dead reckoning
Authors:Wallace Douglas G  Whishaw Ian Q
Institution:Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 Canada. dwallace@niu.edu
Abstract:Dead reckoning, a form of navigation used to locate a present position and to return to a starting position, is used by rats to return to their home base. The present experiment examined whether dead reckoning is displayed by rats during their first exploratory excursions in a novel environment and also examined whether the behaviour requires the integrity of the cells of the hippocampus. Experimental rats, those with NMDA (N-methyl d-aspartate) lesions of Ammon's horn and the dentate gyrus, and control rats could leave a cage to explore a large circular table under light and dark conditions. Home base behaviour, use of olfactory cues, and thigmotaxic- based navigation were evaluated. Temporal, topographical and kinematic analyses were conducted on the first three exploratory excursions that extended at least halfway across the table. Groups did not differ in numbers of exits from the home base, lingering near the home base, distance travelled, or the use of surface cues as might be exemplified by thigmotaxic and olfactory behaviour. Temporal, topographical and kinematic reconstructions of homing behaviour, however, indicated that control rats, but not hippocampal rats, made direct high velocity return trips to the home base in both the light and the dark. Peak velocity of the trips occurred at the trip midpoint, independent of trip distance, suggesting the movements were preplanned. These results are discussed in relation to the ideas that dead reckoning is used in the homing of exploring rats and that this form of navigation involves the hippocampus.
Keywords:dead reckoning  exploratory behaviour  hippocampal lesions  NMDA lesions  path integration  spatial navigation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号