首页 | 本学科首页   官方微博 | 高级检索  
检索        


Chemically induced oxidative stress disrupts the E-cadherin/catenin cell adhesion complex.
Authors:A R Parrish  J M Catania  J Orozco  A J Gandolfi
Institution:Department of Anesthesiology, College of Medicine, Southwest Environmental Health Sciences Center. University of Arizona, Tucson, USA. parrish@medicine.tamu.edu
Abstract:The impact of xenobiotics on intercellular adhesion, a fundamental biological process regulating most, if not all, cellular pathways, has been sparsely investigated. Cell-cell adhesion is regulated in the epithelium primarily by the E-cadherin/catenin complex. To characterize the impact of oxidative stress on the E-cadherin/catenin complex, precision-cut mouse liver slices were challenged with two model compounds for the generation of oxidative stress, diamide (DA; 25-250 microM) or t-butylhydroperoxide (tBHP; 5-50 microM), for 6 h. At the concentrations used, neither compound elicited cytotoxicity, as assessed by intracellular K+ content and leakage of lactate dehydrogenase into the culture media. However, a 25% reduction in non-protein sulfhydryl levels, an indication of oxidative perturbation, was seen in liver slices treated with DA or tBHP. Total protein expression of E-cadherin, beta-, or alpha-catenin was not affected by challenge with DA or tBHP. A decrease of beta-catenin in the SDS-soluble fraction of slices, an indicator of the formation of the adhesion complex, was observed. Additionally, a decrease in beta-catenin interactions with E-cadherin and alpha-catenin, as assessed by immunoprecipitation and Western blot analysis, was seen. Disruption of the E-cadherin/catenin complex by tBHP, but not DA, correlated with enhanced tyrosine phosphorylation of beta-catenin. These results suggest that noncytotoxic oxidative stress disrupts the E-cadherin/catenin cell adhesion complex in precision-cut mouse liver slices.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号