首页 | 本学科首页   官方微博 | 高级检索  
     


Morphology and frequency of axon terminals on the somata, proximal dendrites, and distal dendrites of dorsal neck motoneurons in the cat.
Authors:P K Rose  M Neuber-Hess
Affiliation:Department of Physiology, Queen's University, Kingston, Ontario, Canada.
Abstract:The purpose of the present study was to compare the frequency of different classes of axon terminals on selected regions of the somatodendritic surface of dorsal neck motoneurons. Single motoneurons supplying neck extensor muscles were antidromically identified and intracellularly stained with horseradish peroxidase. By using light microscopic reconstructions as a guide, axon terminals on the somata, proximal dendrites (within 250 microns of the soma), and distal dendrites (more than 540 microns from the soma) were examined at the electron microscopic level. Axon terminals were divided into several classes based on the shape, density, and distribution of their synaptic vesicles. The proportion of axon terminals belonging to each axon terminal class was similar on the somata and proximal dendrites. However, there were major shifts in the relative frequency of most classes of axon terminals on the distal dendrites. The most common classes of axon terminals on the somata and proximal dendrites contained clumps of either spherical or pleomorphic vesicles. These types of axon terminals accounted for more than 60% of the axon terminals on these regions. In contrast, only 11% of the axon terminals found on distal dendrites belonged to these types of axon terminals. The most commonly encountered axon terminal on distal dendrites contained a dense collection of uniformly distributed spherical vesicles. These types of axon terminals accounted for 40% of all terminals on the distal dendrites, but only 5-7% of the axon terminals on the somata and proximal dendrites. Total synaptic density on each of the three regions examined was similar. However, the percentage of membrane in contract with axon terminals was approximately four times smaller on distal dendrites than somata or proximal dendrites. Axon terminals (regardless of type) were usually larger on somata and proximal dendrites than distal dendrites. These results indicate that there are major differences in the types and arrangement of axon terminals on the proximal and distal regions of dorsal neck motoneurons and suggest that afferents from different sources may preferentially contact proximal or distal regions of the dendritic trees of these cells.
Keywords:spinal cord  neck muscles  horseradish peroxidase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号