首页 | 本学科首页   官方微博 | 高级检索  
     


Hypothermia and thiopentone sodium: individual and combined neuroprotective effects on cortical cultures exposed to prolonged hypoxic episodes
Authors:Varathan Sriranganathan  Shibuta Satoshi  Shimizu Tomoaki  Varathan Vidya  Mashimo Takashi
Affiliation:Department of Anesthesiology, Osaka University Medical School, Osaka, Japan. varathansr@yahoo.co.uk
Abstract:Because there are many conflicting reports on cerebroprotective effects of hypothermia and barbiturates, we examined the degree of neuroprotection at defined temperatures (normothermia, 37 degrees C; mild hypothermia, 32 degrees C; deep hypothermia, 22 degrees C; and profound hypothermia, 17 degrees C) and various concentrations (low, 4 microM; moderate, 40 microM; and high, 400 & microM) of thiopentone sodium (TPS), alone and in combination in cortical cultures exposed to prolonged hypoxia (24-48 hr). The survival rate of embryonic day (E)16 Wistar rat cortical neurons was evaluated on photomicrographs before and after experiments. During the 24-hr hypoxic period, the survival rate of neurons was maximal with combinations of mild hypothermia with 40 microM (91.6 +/- 0.7%) and 400 microM TPS (90.8 +/- 0.7%) or deep hypothermia combined with all concentrations of TPS (4 microM, 90.6 +/- 1.0%; 40 microM, 91.4 +/- 0.8%; 400 microM, 91.8 +/- 1.2%). During 48 hr hypoxia, the highest survival rate was seen with the combination of deep hypothermia and either 40 microM (90.9 +/- 0.6%) or 400 microM (91.1 +/- 1.4%) TPS. In the presence of profound hypothermia in combination with all concentrations of TPS, the survival rate was significantly reduced (P< 0.01) compared to combined application of either mild or deep hypothermia with TPS. In summary, maximal neuroprotection was attained with hypothermia and TPS in combination rather than applied individually, during prolonged hypoxic episodes (24- 48 hr). During a 24-hr hypoxic period, both mild and deep hypothermia combined with a clinically relevant concentration of TPS (40 microM) offered the highest neuroprotection. Only deep hypothermia provided maximal neuroprotection when combined with 40 microM TPS, during 48-hr hypoxia. Combination of profound hypothermia and TPS did not confer considerable neuroprotection during long lasting hypoxia.
Keywords:hypoxia, cortical cultures  hypothermia  barbiturates  cerebroprotective
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号