首页 | 本学科首页   官方微博 | 高级检索  
检索        


Improved high-performance liquid chromatography assay of doxorubicin: Detection of circulating aglycones in human plasma and comparison with thin-layer chromatography
Authors:Dean E Brenner  Sherri Galloway  John Cooper  Richard Noone  Kenneth R Hande
Institution:(1) Division of Oncology, Department of Medicine, Vanderbilt University, 37232 Nashville, TN, USA;(2) Nashville Veterans Administration Medical Center, 37203 Nashville, TN, USA;(3) VA Medical Center, 304 ACRE Building, 37203 Nashville, TN, USA
Abstract:Summary We compared doxorubicin and metabolite pharmacokinetic data obtained from thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) assay of plasma samples from six patients who had been treated with doxorubicin. Duplicate 1-ml samples were extracted with chloroform: isopropanol (1:1) and assayed using a sensitive HPLC system incorporating a dual pump gradient with tetrahydrofuran as the mobile phase and fluorescence detection. Duplicate 1-ml samples from the same specimens were assayed using a modification of a previously described TLC assay. Areas under the curve for doxorubicin by HPLC (3.36±2.30 mgrM · h) and TLC (4.16±2.50 mgrM · h) were not significantly different (P=0.5). Terminal half-life of doxorubicin by HPLC (28.0±6.98 h) and TLC (23.2±7.8) (P=0.29) and the calculated total-body clearances by HPLC (0.55±0.29 l/min) and TLC (0.45±0.23) (P=0.55) were not significantly different. Areas under the curve for doxorubicinol by HPLC (2.75±1.4 mgrM · h) and TLC (2.53±7.1 mgrM · h) (P=0.73) showed no significant differences. HPLC detected a mixed 7-deoxydoxorubicinol aglycone-doxorubicin aglycone peak, 7-deoxydoxorubicin aglycone, and two nonpolar, unidentified metabolites. TLC detected the following aglycone metabolites: doxorubicin aglycone, doxorubicinol aglycone, 7-deoxydoxorubicinol aglycone, an unidentified polar metabolite, and several unidentified nonpolar metabolites. From these data we conclude that HPLC and TLC detect concentrations of doxorubicin and doxorubicinol from human plasma equally well to concentrations of 7.0 nM (4 pmol injected doxorubicin). Aglycones do circulate in human plasma at concentrations above the detection limits of both assays. Doxorubicinol aglycone, which is detected by TLC but not by HPLC, may be formed from artifactual breakdown of doxorubicinol during TLC development. Unidentified nonpolar compounds seen on HPLC and TLC may represent further doxorubicin metabolism than previously described.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号