首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular identification of an N-type Ca2+ channel in saccular hair cells
Authors:Ramakrishnan N A  Drescher M J  Sheikhali S A  Khan K M  Hatfield J S  Dickson M J  Drescher D G
Affiliation:Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
Abstract:We report new molecular evidence for the presence of an N-type (Ca(v)2.2, alpha1B) voltage-gated Ca(2+) channel in hair cells of the saccular epithelium of the rainbow trout. The Ca(v)2.2 amino-acid sequence shows 68% and 63% identity compared with chick and human Ca(v)2.2, respectively. This channel reveals features that are characteristic of an N-type Ca(2+) channel: an omega-conotoxin GVIA binding domain, G(betagamma) binding regions, and a synaptic protein interaction site. Immunohistochemical studies with a custom antibody show that immunoreactivity for the Ca(v)2.2 is concentrated in the basolateral and apical regions of hair cells. Whereas trout brain and saccular macula express an 11-amino-acid insert in the second G(betagamma) binding domain of the Ca(v)2.2 I-II loop, isolated hair cells appear not to express this variant. We constructed fusion polypeptides representing portions of the I-II loop, beta1 and beta2a auxiliary subunits, the II-III loop, and syntaxin, and examined their intermolecular interactions via immunoprecipitation and surface plasmon resonance. The I-II loop polypeptides bound both beta1 and beta2a subunits with a preference for beta1, and the II-III loop exhibited Ca(2+)-dependent syntaxin binding. We demonstrated syntaxin immunoreactivity near afferent endings in hair cells, at hair-cell apices, and in efferent endings on hair cells, the former two sites consistent with binding of syntaxin to Ca(v)2.2. The present molecular characterization of the Ca(v)2.2 channel provides novel biochemical evidence for an N-type channel in hair cells, and details molecular interactions of this channel that reflect hair-cell function, such as spontaneous activity and vesicular trafficking. The current work, to our knowledge, represents the first demonstration of a putative N-type channel in hair cells as documented by tissue-specific antibody immunoreactivity and hair-cell-specific cDNA sequence.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号