首页 | 本学科首页   官方微博 | 高级检索  
     


Muscarinic activation of a cation current and associated current noise in entorhinal-cortex layer-II neurons
Authors:Shalinsky Mark H  Magistretti Jacopo  Ma Li  Alonso Angel A
Affiliation:Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.
Abstract:The effects of muscarinic stimulation on the membrane potential and current of in situ rat entorhinal-cortex layer-II principal neurons were analyzed using the whole cell, patch-clamp technique. In current-clamp experiments, application of carbachol (CCh) induced a slowly developing, prolonged depolarization initially accompanied by a slight decrease or no significant change in input resistance. By contrast, in a later phase of the depolarization input resistance appeared consistently increased. To elucidate the ionic bases of these effects, voltage-clamp experiments were then carried out. In recordings performed in nearly physiological ionic conditions at the holding potential of -60 mV, CCh application promoted the slow development of an inward current deflection consistently associated with a prominent increase in current noise. Similarly to voltage responses to CCh, this inward-current induction was abolished by the muscarinic antagonist, atropine. Current-voltage relationships derived by applying ramp voltage protocols during the different phases of the CCh-induced inward-current deflection revealed the early induction of an inward current that manifested a linear current/voltage relationship in the subthreshold range and the longer-lasting block of an outward K(+) current. The latter current could be blocked by 1 mM extracellular Ba(2+), which allowed us to study the CCh-induced inward current (I(CCh)) in isolation. The extrapolated reversal potential of the isolated I(CCh) was approximately 0 mV and was not modified by complete substitution of intrapipette K(+) with Cs(+). Moreover, the extrapolated I(CCh) reversal shifted to approximately -20 mV on removal of 50% extracellular Na(+). These results are consistent with I(CCh) being a nonspecific cation current. Finally, noise analysis of I(CCh) returned an estimated conductance of the underlying channels of approximately 13.5 pS. We conclude that the depolarizing effect of muscarinic stimuli on entorhinal-cortex layer-II principal neurons depends on both the block of a K(+) conductance and the activation of a "noisy" nonspecific cation current. We suggest that the membrane current fluctuations brought about by I(CCh) channel noise may facilitate the "theta" oscillatory dynamics of these neurons and enhance firing reliability and synchronization.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号