首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effects of lipoic acid and dihydrolipoic acid on total erythrocytic thiols under conditions of restricted glucose in vitro
Authors:Coleman Michael D  Rimmer Georgina S E  Haenen Guido R M M
Institution:School of Life and Health Sciences, Aston University, Birmingham, UK. m.d.coleman@aston.ac.uk
Abstract:The effects of lipoic acid and dihydrolipoic acid were explored on total thiol maintenance in diabetic and non-diabetic human erythrocytes in vitro over 22 hr in a 37 degrees C incubation system with no added glucose. Over 18-22.5 hr after treatment in both non-diabetic and diabetic cells, lipoic acid (1 mM) was associated with greater loss of cellular thiols than dihydrolipoic acid (1 mM), compared to respective control values. At 0.1 mM, in non-diabetic cells, although lipoic acid-treated cells' thiol levels were significantly lower than control, there was no significant difference between dihydrolipoic acid-treated cells and control cells regarding thiol levels. In addition, at 0.1 mM, dihydrolipoic acid-treated diabetic cells showed a reduction in thiol levels compared to control. At 0.01 mM, lipoic acid-treated cells had significantly lower measured thiol levels compared with diabetic cells exposed to dihydrolipoic acid, whereas in non-diabetic cells, dihydrolipoic acid-treated erythrocytic thiol levels were significantly greater than those treated with lipoic acid, although there were no other significant differences between the groups. At 22.5 hr, control values of methaemoglobin rose to 6.4 +/- 1.1% in diabetic cells and 3.6 +/- 2.1% in non-diabetic cells. Lipoic acid (1 mM) showed greater methaemoglobin formation in diabetic rather than non-diabetic cells (13.6 +/- 1.5% versus 11.6 +/- 1.5%), whereas dihydrolipoic acid-treated diabetic and non-diabetic cells were less potent in methaemoglobin generation (8.5 +/- 2.4% and 8.4 +/- 1.4%, respectively). These studies suggest that in certain circumstances such as hypoglycaemia, lipoic acid administration may actually be detrimental to cellular oxidant protection status.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号