首页 | 本学科首页   官方微博 | 高级检索  
     


Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson's disease.
Authors:Linda Vercammen  Anke Van der Perren  Elisabetta Vaudano  Rik Gijsbers  Zeger Debyser  Chris Van den Haute  Veerle Baekelandt
Affiliation:Laboratory for Neurobiology and Gene Therapy, Molecular Medicine, K.U. Leuven, Kapucijnenvoer 33 VCTB+5, B-3000 Leuven, Flanders, Belgium.
Abstract:Loss-of-function mutations in the PARK2 gene are the major cause of early onset familial Parkinson's disease. The gene product, parkin, is an E3 ligase of the ubiquitin-proteasome pathway involved in protein degradation. Dopaminergic neuron loss may result from the toxic accumulation of parkin substrates, suggesting a key role for parkin in dopaminergic neuron survival. In this study, we have investigated the neuroprotective capacity of parkin in the 6-OHDA rat model for Parkinson's disease. 6-OHDA induces the generation of reactive oxygen species leading to the degeneration of catecholaminergic neurons, but may also impair proteasome activity. Lentiviral vectors encoding human wild-type parkin or green fluorescent protein were stereotactically injected into the substantia nigra 2 weeks prior to a striatal 6-OHDA lesion. Histological analysis 1 and 3 weeks after lesioning showed a significant preservation of dopaminergic cell bodies and nerve terminals. Moreover, lesioned rats overexpressing parkin displayed a corresponding behavioral improvement as measured by the amphetamine-induced rotation test and the cylinder test. The improved performance in the amphetamine-induced rotation test lasted until 20 weeks after lesioning. Our results demonstrate that parkin acts as a potent neuroprotective agent in vivo against 6-OHDA toxic insults. These data support the therapeutic potential of parkin for the treatment of not only familial but also sporadic Parkinson's disease.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号