首页 | 本学科首页   官方微博 | 高级检索  
     


Different types of degradable vectors from low-molecular-weight polycation-functionalized poly(aspartic acid) for efficient gene delivery
Authors:X.B. Dou  Y. HuN.N. Zhao  F.J. Xu
Affiliation:State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science & Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Abstract:Poly(aspartic acid) (PAsp) has been employed as the potential backbone for the preparation of efficient gene carriers, due to its low cytotoxicity, good biodegradability and excellent biocompatibility. In this work, the degradable linear or star-shaped PBLA was first prepared via ring-opining polymerization of β-benzyl-l-aspartate N-carboxy anhydride (BLA-NCA) initiated by ethylenediamine (ED) or ED-functionalized cyclodextrin cores. Then, PBLA was functionalized via aminolysis reaction with low-molecular-weight poly(2-(dimethylamino)ethyl methacrylate) with one terminal primary amine group (PDMAEMA-NH2), followed by addition of excess ED or ethanolamine (EA) to complete the aminolysis process. The obtained different types of cationic PAsp-based vectors including linear or star PAsp-PDM-NH2 and PAsp-PDM-OH exhibited good condensation capability and degradability, benefiting gene delivery process. In comparison with gold standard polyethylenimine (PEI, ∼25 kDa), the cationic PAsp-based vectors, particularly star-shaped ones, exhibited much better transfection performances.
Keywords:Gene delivery   Degradable   PAsp   Ring-opening polymerization   PDMAEMA
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号