首页 | 本学科首页   官方微博 | 高级检索  
     


Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis
Authors:Ying-Yun Guan  Xin Luan  Jian-Rong Xu  Ya-Rong LiuQin Lu  Chao WangHai-Jun Liu  Yun-Ge GaoHong-Zhuan Chen  Chao Fang
Affiliation:Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
Abstract:Antiangiogenic cancer therapy based on nanoparticulate drug delivery systems (nano-DDS) is emerging as a promising new approach besides the proved molecular-targeted antiangiogenic agents. The current nano-DDS are restricted to the targeting to tumor vascular endothelial cells, but seldom efforts have been made to target the tumor vascular pericytes which are also actively involved in tumor angiogenesis. In this study, we developed a new nano-DDS, TH10 peptide (TAASGVRSMH) conjugated nanoparticles loading docetaxel (TH10-DTX-NP) that can target the NG2 proteoglycan highly expressed in tumor vascular pericytes, for the investigation of therapeutic efficacy in the mice bearing B16F10-luc-G5 melanoma experimental lung metastasis. The results demonstrated that TH10-DTX-NP achieved controlled drug release in PBS and the mixture of rat plasma and PBS (1:1, v/v), and exhibited favorable in vivo long-circulating feature. TH10 peptide conjugation facilitated the nanoparticle internalization in pericytes via the interaction between TH10 and NG2 receptor, leading to more inhibition of pericyte viability and migration. TH10-conjugated nanoparticles could accurately target the vascular pericytes of B16F10-luc-G5 lung metastasis, where DTX-induced pronounceable pericyte apoptosis. TH10-DTX-NP significantly prolonged the mice survival with no obvious toxicity, and this enhanced antitumor effect was closely related with the decreased pericyte density and microvessel density in the lung metastases. The present research reveals the potency and significance of targeting tumor vascular pericytes using nano-DDS in antiangiogenic cancer therapy.
Keywords:Pericyte   Antiangiogenic therapy   Nanoparticles   Melanoma   Lung metastasis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号