首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative lactate-specific MR imaging and 1H spectroscopy of skeletal muscle at macroscopic and microscopic resolutions using a zero-quantum/double-quantum coherence filter and SLIM/GSLIM localization
Authors:Joseph A. Kmiecik  Carl D. Gregory  Zhi-Pei Liang  Daniel E. Hrad  Paul C. Lauterbur  M. Joan Dawson
Abstract:Quantitative lactate imaging and spectroscopy were performed on phantoms and on electrically stimulated, excised frog skeletal muscle at macroscopic and microscopic resolutions. Lactate selectivity was achieved by use of a zero-quantum/double-quantum coherence (ZQC/DQC) lactate filter, which suppressed all signals besides lactate, including water and lipid, to below noise level. Three-dimensional lactate data sets were acquired in 1–3 h; one of these spatial dimensions was frequency-encoded and the other two were phase-encoded. High-resolution images were reconstructed using the spectral localization by imaging (SLIM) and generalized SLIM (GSLIM) techniques. Lactate quantitation was achieved by employing an external lactate concentration standard and was verified by comparison to quantitative STEAM-localized and nonlocalized spectra that used total creatine as an internal concentration reference. Additionally, quantitatively accurate behavior of the SLIM and GSLIM techniques as applied to data sets of low signal-to-noise ratio and to macroscopically heterogeneous objects was verified using simulations and real muscle lactate data sets with known heterogeneity.
Keywords:lactate  muscle  spectroscopic imaging  multiple-quantum coherence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号