首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrate tolerance as a model of vascular dysfunction: Roles for mitochondrial aldehyde dehydrogenase and mitochondrial oxidative stress
Authors:Andreas Daiber  Matthias Oelze  Philip Wenzel  Jennifer M. Dias Wickramanayake  Swenja Schuhmacher  Thomas Jansen  Karl J. Lackner  Michael Torzewski  Thomas Münzel
Affiliation:1. II. Medizinische Klinik, Labor für Molekulare Kardiologie, Johannes-Gutenberg-Universität Mainz, Obere Zahlbacher 63, 55101 Mainz, Germany;2. Institut für Klinische Chemie und Laboratoriumsmedizin, Johannes-Gutenberg-Universität Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
Abstract:Organic nitrates are a group of very effective anti-ischemic drugs. They are used for the treatment of patients with stable angina, acute myocardial infarction and chronic congestive heart failure. A major therapeutic limitation inherent to organic nitrates is the development of tolerance, which occurs during chronic treatment with these agents. The mechanisms underlying nitrate tolerance remain incompletely defined and are likely multifactorial. One mechanism seems to be a diminished bioconversion of nitroglycerin, another seems to be the induction of vascular oxidative stress, and a third may include neurohumoral adaptations. Recent studies have revealed that mitochondrial reactive oxygen species (ROS) formation and a subsequent oxidative inactivation of nitrate reductase, the mitochondrial aldehyde dehydrogenase (ALDH-2), play an important role in the development of nitrate and crosstolerance. The present review focus first on the role of oxidative stress and second on the role of ALDH-2 in organic nitrate bioactivation leading to the development of tolerance and cross-tolerance (endothelial dysfunction) in response to nitroglycerin treatment. Recently, the role of mitochondrial oxidative stress in the development of nitrate tolerance was demonstrated in a mouse model with a heterozygous deletion of manganese superoxide dismutase (MnSOD+/?), which is the mitochondrial isoform of this enzyme. Studies from our own laboratory have provided evidence for cross-talk between mitochondrial and cytosolic (Nox-dependent) sources of ROS. We close this review by focusing on the protective properties of the organic nitrate pentaerithrityl tetranitrate, which upregulates enzymes that have strong antioxidative activity, such as heme oxygenase-1 and ferritin, thereby preventing the development of tolerance and endothelial dysfunction.
Keywords:organic nitrate  superoxide  peroxynitrite  mitochondrial aldehyde dehydrogenase  mitochondrial oxidative stress  vascular dysfunction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号