首页 | 本学科首页   官方微博 | 高级检索  
     


Encapsulation and osteoinduction of human periodontal ligament fibroblasts in chitosan-hydroxyapatite microspheres
Authors:Inanç Bülend  Eser Elçin A  Koç Aysel  Baloş Köksal  Parlar Ateş  Murat Elçin Y
Affiliation:Tissue Engineering and Biomaterials Laboratory, Biotechnology Institute, Faculty of Science, Ankara University, Ankara 06100, Turkey.
Abstract:Periodontal ligament cells play a crucial role in the regeneration of periodontal tissues and an undifferentiated mesenchymal cell subset is thought to exist within this population. The aim of this study was to assess the osteogenic differentiation potential of human periodontal ligament fibroblasts (hPDLFs) in three dimensional (3D)-osteogenic culture environment following encapsulation in chitosan-hydroxyapatite (C/HA) microspheres with the size range of 350-450 microm. Human PDLF cultures were established and three experimental groups were formed: (i) two-dimensional (2D)-culture as single cell monolayer, (ii) 3D-static culture of C/HA encapsulated hPDLFs, and (iii) 3D-dynamic culture of C/HA encapsulated hPDLFs in a rotating wall vessel bioreactor. The cells were cultured in standard culture medium supplemented with beta-glycerophosphate, dexamethasone, and ascorbic acid. After 21 days, immunohistochemistry was performed using antibodies against osteonectin, osteopontin, bone-sialoprotein, and osteocalcin as osteogenic differentiation markers. Phase-contrast and scanning electron microscopy observations were used for histological and morphological evaluation. The combined effects of osteoinductive medium and HA-containing composite microsphere material on encapsulated hPDLFs resulted in the transformation of a considerable portion of the cells into osteoblastic lineage at the end of the experiments. Results demonstrate the ability of hPDLFs to undergo osteogenic differentiation upon induction in vitro, both under 2D and 3D culture conditions. C/HA microspheres in microgravity bioreactor may serve as a suitable 3D environment to support the osteogenic differentiation of human PDLFs, in vitro.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号