A computational model of perceptual fill-in following retinal degeneration |
| |
Authors: | McManus Justin N J Ullman Shimon Gilbert Charles D |
| |
Affiliation: | Rockefeller University, 1230 York Avenue, New York, NY 10065, USA. |
| |
Abstract: | The ablation of afferent input results in the reorganization of sensory and motor cortices. In the primary visual cortex (V1), binocular retinal lesions deprive a corresponding cortical region [lesion projection zone (LPZ)] of visual input. Nevertheless, neurons in the LPZ regain responsiveness by shifting their receptive fields (RFs) outside the retinal lesions; this re-emergence of neural activity is paralleled by the perceptual completion of disrupted visual input in human subjects with retinal damage. To determine whether V1 reorganization can account for perceptual fill-in, we developed a neural network model that simulates the cortical remapping in V1. The model shows that RF shifts mediated by the plexus of spatial- and orientation-dependent horizontal connections in V1 can engender filling-in that is both robust and consistent with psychophysical reports of perceptual completion. Our model suggests that V1 reorganization may underlie perceptual fill-in, and it predicts spatial relationships between the original and remapped RFs that can be tested experimentally. More generally, it provides a general explanation for adaptive functional changes following CNS lesions, based on the recruitment of existing cortical connections that are involved in normal integrative mechanisms. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
| 点击此处可从《Journal of neurophysiology》浏览原始摘要信息 |
|
点击此处可从《Journal of neurophysiology》下载全文 |
|