首页 | 本学科首页   官方微博 | 高级检索  
     


Control of quantal transmitter release at frog's motor nerve terminals
Authors:J. Dudel
Affiliation:1. Physiologisches Institut der Technischen Universit?t München, Biedersteiner Strasse 29, D-8000, München 40, Federal Republic of Germany
Abstract:Quanta of transmitter were released from motor nerve terminals of the frog by a depolarizing 'releasing pulse'. 'Modulating pulses' were subthreshold for release; pre-pulses were added directly before and post-pulses directly after the releasing pulse. Modulating depolarization pulses enhanced release up to 20-fold, and such hyperpolarizations suppressed release up to 10-fold. Pre- and post-pulses were about equally effective. In a wide range these modulations did not affect the facilitation of a test-EPSC by the preceding releasing pulse; modulation thus is not mediated by changes in Ca-inflow. It is suggested that phasic release is largely controlled by an 'activator' which is generated by depolarization, and that modulating pulses increase this activator when depolarizing, and decrease this activator below its resting level if hyperpolarizing. If an interval was interposed between pre- and releasing pulse, the modulating effect decreased very steeply with increasing interval for the first 2 ms, and much slower for longer intervals. Distributions of delays of quantal releases showed a time course of decay very similar to the decay of modulation with increasing interval. Both decays may reflect the exponential decay of activator. Depolarizing post-pulses increased the minimal synaptic delay and the delay of maximal release, and hyperpolarizing ones had the opposite effects. They are interpreted to modulate the generation and decay of a 'repressor', which is produced by depolarization and is responsible for the minimal synaptic delay and the delayed maxima of release. A speculative scheme of interactions of [Ca]i, activator and repressor is discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号