首页 | 本学科首页   官方微博 | 高级检索  
检索        


Dynamic multivoxel‐localized 31P MRS during plantar flexion exercise with variable knee angle
Authors:Fabian Niess  Georg B Fiedler  Albrecht I Schmid  Elmar Laistler  Roberta Frass‐Kriegl  Michael Wolzt  Ewald Moser  Martin Meyerspeer
Institution:1. Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria;2. Highfield MR Center, Medical University of Vienna, Austria;3. Department of Clinical Pharmacology, Medical University of Vienna, Austria
Abstract:Exercise studies investigating the metabolic response of calf muscles using 31P MRS are usually performed with a single knee angle. However, during natural movement, the distribution of workload between the main contributors to force, gastrocnemius and soleus is influenced by the knee angle. Hence, it is of interest to measure the respective metabolic response of these muscles to exercise as a function of knee angle using localized spectroscopy. Time‐resolved multivoxel 31P MRS at 7 T was performed simultaneously in gastrocnemius medialis and soleus during rest, plantar flexion exercise and recovery in 12 healthy volunteers. This experiment was conducted with four different knee angles. PCr depletions correlated negatively with knee angle in gastrocnemius medialis, decreasing from 79±14 % (extended leg) to 35±23 %(~40°), and positively in soleus, increasing from 20±21 % to 36±25 %; differences were significant. Linear correlations were found between knee angle and end‐exercise PCr depletions in gastrocnemius medialis (R2=0.8) and soleus (R2=0.53). PCr recovery times and end‐exercise pH changes that correlated with PCr depletion were consistent with the literature in gastrocnemius medialis and differences between knee angles were significant. These effects were less pronounced in soleus and not significant for comparable PCr depletions. Maximum oxidative capacity calculated for all knee angles was in excellent agreement with the literature and showed no significant changes between different knee angles. In conclusion, these findings confirm that plantar flexion exercise with a straight leg is a suitable paradigm, when data are acquired from gastrocnemius only (using either localized MRS or small surface coils), and that activation of soleus requires the knee to be flexed. The present study comprises a systematic investigation of the effects of the knee angle on metabolic parameters, measured with dynamic multivoxel 31P MRS during muscle exercise and recovery, and the findings should be used in future study design.
Keywords:exercise  knee angle  multi‐voxel  muscle  phosphorus MRS/MRSI  spectroscopic localization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号