首页 | 本学科首页   官方微博 | 高级检索  
检索        


Quantitative evaluation of pulmonary gas‐exchange function using hyperpolarized 129Xe CEST MRS and MRI
Authors:Haidong Li  Zhiying Zhang  Xiuchao Zhao  Yeqing Han  Xianping Sun  Chaohui Ye  Xin Zhou
Institution:1. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China;2. University of Chinese Academy of Sciences, Beijing, China
Abstract:Hyperpolarized 129Xe gas MR has been a powerful tool for evaluating pulmonary structure and function due to the extremely high enhancement in spin polarization, the good solubility in the pulmonary parenchyma, and the excellent chemical sensitivity to its surrounding environment. Generally, the quantitative structural and functional information of the lung are evaluated using hyperpolarized 129Xe by employing the techniques of chemical shift saturation recovery (CSSR) and xenon polarization transfer contrast (XTC). Hyperpolarized 129Xe chemical exchange saturation transfer (Hyper‐CEST) is another method for quantifying the exchange information of hyperpolarized 129Xe by using the exchange of xenon signals according to its different chemical shifts, and it has been widely used in biosensor studies in vitro. However, the feasibility of using hyperpolarized 129Xe CEST to quantify the pulmonary gas exchange function in vivo is still unclear. In this study, the technique of CEST was used to quantitatively evaluate the gas exchange in the lung globally and regionally via hyperpolarized 129Xe MRS and MRI, respectively. A new parameter, the pulmonary apparent gas exchange time constant (Tapp), was defined, and it increased from 0.63 s to 0.95 s in chronic obstructive pulmonary disease (COPD) rats (induced by cigarette smoke and lipopolysaccharide exposure) versus the controls with a significant difference (P = 0.001). Additionally, the spatial distribution maps of Tapp in COPD rats' pulmonary parenchyma showed a regionally obvious increase compared with healthy rats. These results indicated that hyperpolarized 129Xe CEST MR was an effective method for globally and regionally quantifying the pulmonary gas exchange function, which would be helpful in diagnosing lung diseases that are related to gas exchange, such as COPD.
Keywords:CEST  cigarette smoke  COPD  gas exchange function  hyperpolarized xenon  lung
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号