PEGylated quaternized copolymer/DNA complexes for gene delivery |
| |
Authors: | Vroman Benoît Ferreira Isabel Jérôme Christine Jérôme Robert Préat Véronique |
| |
Affiliation: | Université Catholique de Louvain, Unité de Pharmacie Galénique, Avenue E. Mounier 73.20, 1200 Brussels, Belgium. |
| |
Abstract: | The aim of this study was to improve the colloidal stability, decrease unspecific interactions with cells and blood components of a novel gene delivery system composed of epsilon-caprolactone and quaternized epsilon-caprolactone. For this purpose, diblock 50/50 copolymer was used to generate complexes with DNA by either the solvent evaporation technique and by dialysis. The size, surface charge and degree of interaction of the plasmid-loaded formulations were measured. Then, polyplexes were combined with a poly(CL)-b-PEG copolymer to create a hydrophilic corona on the surface of the complexes. The cytotoxicity, transfection efficiency and cellular uptake of polyplexes and their association with PEG were evaluated on HeLa cells. The dialysis method did not allow to reduce the size of complexes as compared to the solvent evaporation method. The zeta potential of polyplexes became positive from a charge ratio of 4. The degree of interaction of copolymer with plasmid DNA was very high. Cytotoxicity and transfection efficiency were found to be comparable to polyethylenimine 50 kDa. Association of polyplexes with poly(CL)-b-PEG copolymer led to a small increase in particle size and a sharp decrease of charge surface. Cytotoxicity, transfection efficiency and cellular uptake were significantly reduced relative to unshielded copolymer/DNA complexes. The PEGylated formulations may be an attractive approach for an in vivo application. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|