Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic beta-cells and human islets: involvement of 3',5'-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-Kinase/Akt signaling |
| |
Authors: | Granata Riccarda Settanni Fabio Biancone Luigi Trovato Letizia Nano Rita Bertuzzi Federico Destefanis Silvia Annunziata Marta Martinetti Monica Catapano Filomena Ghè Corrado Isgaard Jorgen Papotti Mauro Ghigo Ezio Muccioli Giampiero |
| |
Affiliation: | Laboratory of Molecular and Cellular Endocrinology, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy. riccarda.granata@unito.it |
| |
Abstract: | Among its pleiotropic actions, ghrelin modulates insulin secretion and glucose metabolism. Herein we investigated the role of ghrelin in pancreatic beta-cell proliferation and apoptosis induced by serum starvation or interferon (IFN)-gamma/TNF-alpha, whose synergism is a major cause for beta-cell destruction in type I diabetes. HIT-T15 beta-cells expressed ghrelin but not ghrelin receptor (GRLN-R), which binds acylated ghrelin (AG) only. However, both unacylated ghrelin (UAG) and AG recognized common high-affinity binding sites on these cells. Either AG or UAG stimulated cell proliferation through Galpha(s) protein and prevented serum starvation- and IFN-gamma/TNF-alpha-induced apoptosis. Antighrelin antibody enhanced apoptosis in either the presence or absence of serum but not cytokines. AG and UAG even up-regulated intracellular cAMP. Blockade of adenylyl cyclase/cAMP/protein kinase A signaling prevented the ghrelin cytoprotective effect. AG and UAG also activated phosphatidyl inositol 3-kinase (PI3K)/Akt and ERK1/2, whereas PI3K and MAPK inhibitors counteracted the ghrelin antiapoptotic effect. Furthermore, AG and UAG stimulated insulin secretion from HIT-T15 cells. In INS-1E beta-cells, which express GRLN-R, AG and UAG caused proliferation and protection against apoptosis through identical signaling pathways. Noteworthy, both peptides inhibited cytokine-induced NO increase in either HIT-T15 or INS-1E cells. Finally, they induced cell survival and protection against apoptosis in human islets of Langerhans. These expressed GRLN-R but showed also UAG and AG binding sites. Our data demonstrate that AG and UAG promote survival of both beta-cells and human islets. These effects are independent of GRLN-R, are likely mediated by AG/UAG binding sites, and involve cAMP/PKA, ERK1/2, and PI3K/Akt. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|