首页 | 本学科首页   官方微博 | 高级检索  
检索        


COX-1 and COX-3 inhibitors
Authors:Botting Regina
Institution:

The William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine, Charterhouse Square, London EC1M 6BQ, UK

Abstract:Low doses of aspirin reduce both pain and fever, whereas the anti-inflammatory action of aspirin requires a much higher dose. It is possible that inhibition of cyclooxygenase (COX)-1 is the major action of aspirin involved in its analgesic and antipyretic effects, and inhibition of COX-2 is responsible for its anti-inflammatory action. We compared the analgesic effects of an aspirin-like drug (diclofenac) and a centrally acting analgesic (paracetamol) in the mouse stretching test and confirmed that the analgesic action of the aspirin-like drug was peripheral.

Two possible sites have been postulated for the antipyretic action of non-steroid anti-inflammatory drugs; (a) inhibition of COX in endothelial cells of hypothalamic blood vessels or (b) inhibition of COX synthesising prostaglandins near sensory receptors of sub-diaphragmatic vagal afferents. The antipyretic action of aspirin may be mediated by inhibition of COX-3 in hypothalamic endothelial cells or by inhibition of COX-1 localised close to sensory receptors of peripheral vagal afferents. It is also possible that both enzymes are involved in the antipyretic action of aspirin. Whereas lipopolysaccharide (LPS)-induced fever is attenuated in COX-2 gene-deleted mice, suggesting that COX-2 is responsible for this type of fever, the COX-1 gene may also be important in temperature regulation and in mediating the pyresis that occurs in the absence of infection.

Keywords:Prostaglandins  Cyclooxygenases  Analgesia  Fever  Aspirin  Diclofenac  Paracetamol
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号