首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mutagenicity and genotoxicity of PM2.5 issued from an urbano‐industrialized area of Dunkerque (France)
Authors:V André  S Billet  D Pottier  J Le Goff  I Pottier  G Garçon  P Shirali  F Sichel
Institution:1. Groupe Régional d'Etudes sur le Cancer (GRECAN) EA1772 et IFR 146 (ICORE), Université de Caen Basse‐Normandie et Centre Fran?ois Baclesse, Avenue Général Harris, 14076, Caen cedex 05, France;2. Université de Lille Nord de France, 59000, Lille, France;3. Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, Maison de la Recherche en Environnement Industriel 2, Université du Littoral C?te d'Opale, Avenue Maurice Schumann, 59140 Dunkerque, France
Abstract:Epidemiological studies have demonstrated the link between chronic exposure to particulate matter (PM), especially particles with an aerodynamic diameter lesser than 2.5 µm (PM2.5), and lung cancer. Mechanistic investigations focus on the contribution of the various genotoxicants adsorbed onto the particles, and more particularly on polycyclic aromatic hydrocarbons or nitroaromatics. Most of the previous studies dealing with genotoxic and/or mutagenic measurements were performed on organic extracts obtained from PM2.5 collected in polluted areas. In contrast, we have evaluated genotoxic and mutagenic properties of urbano‐industrial PM2.5 (PM) collected in Dunkerque (France). Thermally desorbed PM2.5 (dPM) was also comparatively studied. Suspensions of PM and dPM (5–50 µg per plate) were tested in Salmonella tester strains TA98, TA102 and YG1041 ± S9mix. Significant mutagenicity was observed for PM in YG1041 ± S9 mix. In strain TA102 – S9mix, a slight, but not significant dose–response increase was observed, for both PM and dPM. Genotoxic properties of PM and dPM were evaluated by the measurement of (1) 8‐OHdG in A549 cells and (2) bulky DNA adducts on A549 cells and on human alveolar macrophages (AMs) in primary culture. A dose‐dependant formation of 8‐OHdG adducts was observed on A549 cells for PM and dPM, probably mainly attributed to the core of the particles. Bulky DNA adducts were observed only in AMs after exposure to PM and dPM. In conclusion, using relevant exposure models, suspension of PM2.5 induces a combination of DNA‐interaction mechanisms, which could contribute to the induction of lung cancer in exposed populations. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:air pollution  PM2  5  mutagenicity  Ames test  genotoxicity  DNA bulky adducts  8‐OHdG  A549 cells  human alveolar macrophages
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号