首页 | 本学科首页   官方微博 | 高级检索  
检索        


Dendritic mechanisms controlling the threshold and timing requirement of synaptic plasticity
Authors:Cuiping Zhao  Lang Wang  Theoden Netoff  Li‐Lian Yuan
Institution:1. Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota;2. Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota;3. Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
Abstract:Active conductances located and operating on neuronal dendrites are expected to regulate synaptic integration and plasticity. We investigate how Kv4.2‐mediated A‐type K+ channels and Ca2+‐activated K+ channels are involved in the induction process of Hebbian‐type plasticity that requires correlated pre‐ and postsynaptic activities. In CA1 pyramidal neurons, robust long‐term potentiation (LTP) induced by a theta burst pairing protocol usually occurred within a narrow window during which incoming synaptic potentials coincided with postsynaptic depolarization. Elimination of dendritic A‐type K+ currents in Kv4.2?/? mice, however, resulted in an expanded time window, making the induction of synaptic potentiation less dependent on the temporal relation of pre‐ and postsynaptic activity. For the other type of synaptic plasticity, long‐term depression, the threshold was significantly increased in Kv4.2?/? mice. This shift in depression threshold was restored to normal when the appropriate amount of internal free calcium was chelated during induction. In concert with A‐type channels, Ca2+‐activated K+ channels also exerted a sliding effect on synaptic plasticity. Blocking these channels in Kv4.2?/? mice resulted in an even larger potentiation while by contrast, the depression threshold was shifted further. In conclusion, dendritic A‐type and Ca2+‐activated K+ channels dually regulate the timing‐dependence and thresholds of synaptic plasticity in an additive way. © 2010 Wiley‐Liss, Inc.
Keywords:dendrite  potassium channel  temporal window  metaplasticity  pyramidal neuron
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号