首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of BMD precision for Prodigy and Delphi spine and femur scans
Authors:J. A. Shepherd  B. Fan  Y. Lu  E. M. Lewiecki  P. Miller  H. K. Genant
Affiliation:(1) Department of Radiology, University of California, 185 Berry Street, Ste. 350, San Francisco, CA 94143-0946, USA;(2) New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, USA;(3) Colorado Center for Bone Research, Lakewood, CO, USA;(4) Synarc, Inc., San Francisco, CA, USA
Abstract:Introduction Precision error in bone mineral density (BMD) measurement can be affected by patient positioning, variations in scan analysis, automation of software, and both short- and long-term fluctuations of the densitometry equipment. Minimization and characterization of these errors is essential for reliable assessment of BMD change over time.Methods We compared the short-term precision error of two dual-energy X-ray absorptiometry (DXA) devices: the Lunar Prodigy (GE Healthcare) and the Delphi (Hologic). Both are fan-beam DXA devices predominantly used to measure BMD of the spine and proximal femur. In this study, 87 women (mean age 61.6±8.9 years) were measured in duplicate, with repositioning, on both systems, at one of three clinical centers. The technologists were International Society for Clinical Densitometry (ISCD) certified and followed manufacturer-recommended procedures. All scans were acquired using 30-s scan modes. Precision error was calculated as the root-mean-square standard deviation (RMS-SD) and coefficient of variation (RMS-%CV) for the repeated measurements. Right and left femora were evaluated individually and as a combined dual femur precision. Precision error of Prodigy and Delphi measurements at each measurement region was compared using an F test to determine significance of any observed differences.Results While precision errors for both systems were low, Prodigy precision errors were significantly lower than Delphi at L1–L4 spine (1.0% vs 1.2%), total femur (0.9% vs 1.3%), femoral neck (1.5% vs 1.9%), and dual total femur (0.6% vs 0.9%). Dual femur modes decreased precision errors by approximately 25% compared with single femur results.Conclusions This study suggests that short-term BMD precision errors are skeletal-site and manufacturer specific. In clinical practice, precision should be considered when determining: (a) the minimum time interval between baseline and follow-up scans and (b) whether a statistically significant change in the patient’s BMD has occurred.
Keywords:DXA  Least significant change  Osteoporosis  Repeatability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号