首页 | 本学科首页   官方微博 | 高级检索  
     


Differential effect of dietary selenium on the long-term neurotoxicity induced by MDMA in mice and rats
Authors:Sanchez V  Camarero J  O'Shea E  Green A R  Colado M I
Affiliation:Departamento de Farmacologia, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain.
Abstract:We examined the effect of dietary selenium (Se) on the long-term effect of 3,4-methylenedioxymethamphetamine (MDMA) on dopamine (DA) and 5-hydroxytryptamine (5-HT) containing neurons in the brain of mice and rats. Animals were fed either a Se-deficient (<0.02 ppm) or Se-replete (0.2 ppm) diet for 8 weeks. On the seventh week mice received three injections of MDMA (15 mg/kg, i.p. 3 h apart) or saline and rats a single dose of MDMA (12.5 mg/kg i.p.) or saline. All animals were sacrificed 7 days later. MDMA administration to mice depleted striatal DA concentration in both dietary groups, although depletion was considerably larger in the Se-deficient mice (64%) than Se-replete mice (30%). In addition, a decrease in 5-HT (17-32%) occurred in brain regions of Se-deficient but not Se-replete mice. In rats, MDMA decreased cortical [(3)H]-paroxetine binding (62%) and 5-HT content, the depletion being similar in the Se-deficient and Se-replete groups. No DA loss occurred in either group. There was no difference in the hyperthermic response induced by MDMA in Se-deficient or Se-replete animals. The Se-deficient diet decreased glutathione peroxidase (GPx) activity by 30% in mouse striatum and cortex and increased the degree of lipid peroxidation in cortical synaptosomes. Se-deficient rats also showed a decrease in brain GPx activity compared with the Se-replete group, but the degree of lipid peroxidation in synaptosomes was similar in both dietary groups. These results suggest that the antioxidant capacity of rats and mice differ leading to a differential susceptibility to the oxidative stress caused by MDMA in situations of low dietary Se.
Keywords:Selenium   Ecstasy   Glutathione peroxidase   Dopamine   Serotonin   Neurotoxicity
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号