首页 | 本学科首页   官方微博 | 高级检索  
     


Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles
Authors:Jansch M  Stumpf P  Graf C  Rühl E  Müller R H
Affiliation:Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics & NutriCosmetics, Freie Universit?t Berlin, Kelchstr. 31, 12169 Berlin, Germany. mirko.jansch@gmx.de
Abstract:In this study the kinetics of plasma protein adsorption onto ultrasmall superparamagnetic iron oxide (USPIO) particles have been analyzed and compared to previously published kinetic studies on polystyrene particles (PS particles), oil-in-water nanoemulsions and solid lipid nanoparticles (SLNs). SPIO and USPIO nanoparticles are commonly used as magnetic resonance imaging (MRI) enhancers for tumor imaging as well as in drug delivery applications. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) has been used to determine the plasma protein adsorption onto the citrate/triethylene glycol-stabilized iron oxide surface. The results indicate that the existence of a Vroman effect, a displacement of previously adsorbed abundant proteins, such as albumin or fibrinogen, respectively, on USPIO particles has to be denied. Previously, identical findings have been reported for oil-in-water nanoemulsions. Furthermore, the protein adsorption kinetics differs dramatically from that of other solid drug delivery systems (PS, SLN). More relevant for the in vivo fate of long circulating particles is the protein corona after several minutes or even hours. Interestingly, the patterns received after an incubation time of 0.5 min to 240 min are found to be qualitatively and quantitatively similar. This leads to the assumption of a long-lived ("hard") protein corona around the iron oxide nanoparticles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号