首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Mg2+ and SR luminal Ca2+ on caffeine-induced Ca2+ release in skeletal muscle from humans susceptible to malignant hyperthermia
Authors:Adrian M. Duke  Philip M. Hopkins  Derek S. Steele
Affiliation:School of Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT;St James's University Hospital, Leeds LS9 7TF, UK
Abstract:Regulation of the ryanodine receptor (RYR) by Mg2+ and SR luminal Ca2+ was studied in mechanically skinned malignant hyperthermia susceptible (MHS) and non-susceptible (MHN) fibres from human vastus medialis. Preparations were perfused with solutions mimicking the intracellular milieu and changes in [Ca2+] were detected using fura-2 fluorescence. At 1 m m cytosolic Mg2+, MHS fibres had a higher sensitivity to caffeine (2-40 m m ) than MHN fibres. The inhibitory effect of Mg2+ on caffeine-induced Ca2+ release was studied by increasing [Mg2+] of the solution containing 40 m m caffeine. Increasing [Mg2+] from 1 to 3 m m reduced the amplitude of the caffeine-induced Ca2+ transient by 77 ± 7.4 % ( n = 8) in MHN fibres. However, the caffeine-induced Ca2+ transient decreased by only 24 ± 8.1 % ( n = 9) in MHS fibres. In MHN fibres, reducing the Ca2+ loading period from 4 to 1 min (at 1 m m Mg2+) decreased the fraction of the total sarcoplasmic reticulum (SR) Ca2+ content released in response to 40 m m caffeine by 90.4 ± 6.2 % ( n = 6). However, in MHS fibres the response was reduced by only 31.2 ± 17.4 % ( n = 6) under similar conditions. These results suggest that human malignant hyperthermia (MH) is associated with reduced inhibition of the RYR by (i) cytosolic Mg2+ and (ii) SR Ca2+ depletion. Both of these effects may contribute to increased sensitivity of the RYR to caffeine and volatile anaesthetics.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号