首页 | 本学科首页   官方微博 | 高级检索  
     


Properties of LTD and LTP of retinocollicular synaptic transmission in the developing rat superior colliculus
Authors:Lo Fu-Sun  Mize R Ranney
Affiliation:Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
Abstract:The developing retinocollicular pathway undergoes synaptic refinement in order to form the precise retinotopic pattern seen in adults. To study the mechanisms which underlie refinement, we investigated long-term changes in retinocollicular transmission in rats aged P0-P25. Field potentials (FPs) in the superior colliculus (SC) were evoked by stimulation of optic tract fibers in an in vitro isolated brainstem preparation. High intensity stimulation induced long-term depression (LTD) in the SC after both low (1000 stimuli at 1 Hz) and higher (1000 stimuli at 50 Hz) frequency stimulation. The induction of LTD was independent of activation of NMDA and GABA(A) receptors, because D-APV (100 microM) and bicuculline (10 microM) did not block LTD. Induction of LTD was dependent upon activation of L-type Ca(2+) channels as 10 microM nitrendipine, an L-type Ca(2+) channel blocker, significantly decreased the magnitude of LTD. LTD was down-regulated during development. LTD magnitude was greatest in rats aged P0-P9 and significantly less in rats aged P10-P25. Long-term potentiation (LTP) was induced by low intensity stimulation and only after high frequency tetanus (1000 stimuli at 50 Hz). LTP was NMDA receptor dependent because d-APV (100 microM) completely abolished it. LTP induction was also blocked by the L-type Ca2+ channel blocker nitrendipine. The magnitude of LTP first increased with age, being significantly greater at P7-P13 than at P0-3 and then decreased at P23-25. In summary, both LTD and LTP are present during retinocollicular pathway refinement, but have different transmitter and ionic mechanisms and time courses of expression.
Keywords:calcium channels    NMDA    synaptic plasticity    visual system
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号