首页 | 本学科首页   官方微博 | 高级检索  
检索        


Enriched environment fails to increase meningitis‐induced neurogenesis and spatial memory in a mouse model of pneumococcal meningitis
Authors:Simone C Tauber  Stephanie Bunkowski  Sandra Ebert  Daniela Schulz  Benedikt Kellert  Roland Nau  Joachim Gerber
Institution:1. Department of Neurology, Georg‐August‐University, G?ttingen, Germany;2. Department of Neurology, RWTH University Hospital, Aachen, Germany
Abstract:An increase in adult neurogenesis was observed after exposure to enriched environment (EE) and during reconvalescence from experimental pneumococcal meningitis. This study investigated neurogenesis and spatial learning performance 5 weeks after bacterial meningitis and exposure to EE. C57BL/6 mice were infected by intracerebral injection of Streptococcus pneumoniae and treated with ceftriaxone for 5 days. Forty‐eight hours after infection, one group (n = 22) was exposed to EE and the other group (n = 23) housed under standard conditions. Another set of mice was kept under either enriched (n = 16) or standard (n = 15) conditions without bacterial meningitis. Five weeks later, the Morris water maze was performed, and neurogenesis was evaluated by means of immunohistochemistry. Mice housed in EE without prior bacterial infection displayed both increased neurogenesis and improved water maze performance in comparison with uninfected control animals. Bacterial meningitis stimulated neurogenesis in the granular cell layer of the dentate gyrus: with standard housing conditions, we observed a higher density of BrdU‐immunolabeled and TUC‐4‐expressing cells 5 weeks after induction of bacterial meningitis than in the noninfected control group. EE did not further increase progenitor cell proliferation and neuronal differentiation in the subgranular cell layer of the dentate gyrus after bacterial meningitis in comparison with infected mice housed under standard conditions. Moreover, the Morris water maze showed no significant differences between survivors of meningitis exposed to EE and animals kept in standard housing. In summary, exposure to EE after pneumococcal meningitis did not further increase meningitis‐induced neurogenesis or improve spatial learning. © 2009 Wiley‐Liss, Inc.
Keywords:neurogenesis  dentate gyrus  Morris water maze  Streptococcus pneumoniae  bacterial meningitis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号