首页 | 本学科首页   官方微博 | 高级检索  
     


Quantifying endogenous glucose production and contributing source fluxes from a single 2H NMR spectrum
Authors:Patricia M. Nunes  John G. Jones
Affiliation:NMR Research Unit, Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
Abstract:Endogenous glucose production (EGP), gluconeogenic and glycogenolytic fluxes by analysis of a single 2H‐NMR spectrum is demonstrated with 6‐hr and 24‐hr fasted rats. Animals were administered [1‐2H, 1‐13C]glucose, a novel tracer of glucose turnover, and 2H2O. Plasma glucose enrichment from both tracers was quantified by 2H‐NMR analysis of monoacetone glucose. The 6‐hr fasted group (n = 7) had EGP rates of 95.6 ± 13.3 μmol/kg/min, where 56.2 ± 7.9 μmol/kg/min were derived from PEP; 12.1 ± 2.1 μmol/kg/min from glycerol, and 32.1 ± 4.9 μmol/kg/min from glycogen. The 24‐hr fasted group (n = 7) had significantly lower EGP rates (52.8 ± 7.2 μmol/kg/min, P = 0.004 vs. 6 hr) mediated by a significantly reduced contribution from glycogen (4.7 ± 5.9 μmol/kg/min, P = 0.02 vs. 6 hr) while PEP and glycerol contributions were not significantly different (39.5 ± 3.9 and 8.5 ± 1.2 μmol/kg/min, respectively). These estimates agree with previous assays of EGP fluxes in fasted rats obtained by multinuclear NMR analyses of plasma glucose enrichment from 2H2O and 13C‐glucose tracers. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.
Keywords:diabetes  deuterated water  endogenous glucose production  gluconeogenesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号