首页 | 本学科首页   官方微博 | 高级检索  
检索        


Imaging speech production using fMRI
Authors:Gracco Vincent L  Tremblay Pascale  Pike Bruce
Institution:School of Communication Sciences and Disorders, McGill University, Faculty of Medicine, Montreal, Quebec, Canada. vincent.gracco@mcgill.ca
Abstract:Human speech is a well-learned, sensorimotor, and ecological behavior ideal for the study of neural processes and brain-behavior relations. With the advent of modern neuroimaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), the potential for investigating neural mechanisms of speech motor control, speech motor disorders, and speech motor development has increased. However, a practical issue has limited the application of fMRI to issues in spoken language production and other related behaviors (singing, swallowing). Producing these behaviors during volume acquisition introduces motion-induced signal changes that confound the activation signals of interest. A number of approaches, ranging from signal processing to using silent or covert speech, have attempted to remove or prevent the effects of motion-induced artefact. However, these approaches are flawed for a variety of reasons. An alternative approach, that has only recently been applied to study single-word production, uses pauses in volume acquisition during the production of natural speech motion. Here we present some representative data illustrating the problems associated with motion artefacts and some qualitative results acquired from subjects producing short sentences and orofacial nonspeech movements in the scanner. Using pauses or silent intervals in volume acquisition and block designs, results from individual subjects result in robust activation without motion-induced signal artefact. This approach is an efficient method for studying the neural basis of spoken language production and the effects of speech and language disorders using fMRI.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号