首页 | 本学科首页   官方微博 | 高级检索  
检索        


Characterization of the ATP-inhibited K+ current in canine coronary smooth muscle cells
Authors:Xiaoping Xu  Kai S Lee
Institution:(1) Cardiovascular Diseases Research, Upjohn Laboratories, 301 Henrietta St., 49007 Kalamazoo, Michigan, MI, USA
Abstract:Intracellular adenosine triphosphate (ATP)-inhibited K+ currents (I K, ATP ) in canine coronary artery smooth muscle cells were characterized in the wholecell configuration using the suction pipette method. Cells dialysed internally with solutions containing 5 mM ATP (ATPi) showed little detectable whole-cell current at potentials more negative than –30 mV. However, cells dialysed with ATPi-free solutions developed a time- and voltage-independent current which reached a maximum of 132±25 pA at –40 mV about 10 min following patch rupture. After ldquorun-uprdquo, the current showed little ldquorun-downrdquo. Concentration-dependent inhibition by ATPi yielded an inhibition constant (K i of 350 mgrM and a Hill coefficient of 2.3. In ATPi-free solutions, the large current at –40 mV was reduced by glibenclamide with aK i of 20 nM and a Hill coefficient of 0.95. Conversely, in 1 mM ATPi solutions, the small current at –40 mV was increased by P-1075 from 8±2 pA to 143±33 pA, with a dissociation constant (K d) of 0.16 mgrM and a Hill coefficient of 1.7. The effect of P-1075 was antagonized by glibenclamide. Maximal current density elicited by either ATPi depletion or external application of the channel opener P-1075 was similar with slope conductances of 81±10 pS/pF and 76±13 pS/pF respectively in the potential range of –90 to –40 mV. External Ca2+ had no effect on this current. Finally, in 1 mM ATPi, 20 and 50 mgrM adenosine increased the current slope conductance by 36±15% and 73±10% respectively between –90 to –40 mV. TheI K, ATP although very small in these cells, was extremely effective in causing membrane potential hyperpolarization.
Keywords:ATP-inhibited K current  Coronary smooth muscle cells
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号