Abstract: | Previous work showed the presence of adenosine receptors as well as adenosine uptake and release mechanisms in developing chick retinal neurons in culture. In the present work we show that exogenous glutamate or kainate promotes extensive cell death in these cultures which is blocked when the cultures are previously incubated with adenosine. Addition of glutamate or kainate to purified cultures of retinal neurons and photoreceptors induced massive death of cultured cells which was inhibited in both cases by preincubation with MK801, an NMDA antagonist, or DNQX, an AMPA/kainate antagonist. Cell death was also greatly attenuated by preincubation with adenosine plus EHNA, an adenosine deaminase inhibitor, NBI, an adenosine uptake blocker, the permeable cAMP analogs 8-Br cAMP and Sp cAMP and the A2a agonists CGS 21680 and DPMA, but not with the A1 receptor agonist CHA. Kinetic studies performed determining the intracellular LDH activity showed that maximal death was observed after 8 h and in concentrations of glutamate as low as 50 μM. We also observed a time-dependent protective effect of adenosine beginning after 1 h of preincubation and reaching a maximal effect after 24 h, indicating its association with changes in cellular metabolism induced by long-term exposure of cells to the nucleoside. The results show that adenosine inhibits glutamate toxicity in retinal neurons through a long-term activation of A2a receptors and elevation of intracellular cyclic AMP levels. |