首页 | 本学科首页   官方微博 | 高级检索  
检索        


Absence of post-fast food compensation in the golden hamster (Mesocricetus auratus).
Authors:H J Silverman  I Zucker
Institution:Department of Psychology, University of California, Berkeley, CA 94720 USA
Abstract:Ad lib food intakes and body weights were measured for hamsters fed one of 4 different diets. Animals were then placed on an intermittent starvation (IS) schedule in which food was available ad lib on alternate days only. Hamsters of both sexes showed little or no post-fast food compensation, i.e., after 24 hr of food deprivation their daily food intake was no greater than their daily intake during baseline testing. These animals lost a large percentage of their initial body weight and many of them died. Other hamsters restricted daily to half-day feeding periods that nearly coincided with the light (L) or dark (D) phases of the illumination cycle also failed to show food compensation; they generally ate no more during D- or L-periods that followed a half day of food deprivation than during D- or L-periods that succeeded a half day of ad lib feeding. These animals lost substantial portions of their initial body weight and many died. Hamsters refed after a 96-hr fast and an 18% loss in body weight also did not increase their food intake substantially above baseline values. In each of these experiments substantial portions of the body weight lost during starvation were not regained during extended ad lib refeeding regimens. These findings contrast strikingly with the behavior of rats tested concurrently; rats showed a dramatic post-fast hyperphagia, rapid recovery of body weight lost during starvation, and a reversal of the normal nocturnal feeding pattern when refeeding began during L-periods. Hamsters' nocturnal rhythms of eating and drinking were remarkably stable in the face of all the experimental manipulations. However, hamsters, as well as rats, were quite effective in compensating for changes in diet density; a 1:1 dilution of a liquid diet produced a prompt doubling in the volume of diet ingested. Impressive but less complete compensation was recorded when solid diets were diluted with inert substances (kaolin, cellulose). Hoarding and perhaps hibernation rather than compensation may have evolved as adaptations to periods of food scarcity. Noncompensation may be related to hamsters' nonresponsiveness to some signal of energy depletion. The possibility of lipogenesis being a rate-limiting step is considered. The desirability of adequate field data as a prerequisite to laboratory analysis of feeding behavior is emphasized.
Keywords:Hyperphagia  Hibernation  Hoarding  Digestion  Biological rhythms  Eating and drinking  Polydipsia  Species specificity of ingestive behavior  Ecology and food intake  Fermentation  Lipogenesis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号