首页 | 本学科首页   官方微博 | 高级检索  
     


Acute and adaptive responses in humans to exercise in a warm, humid environment
Authors:B. Nielsen  Søren Strange  Niels Juel Christensen  Jørgen Warberg  Bengt Saltin
Affiliation:August Krogh Institutet, Universitetsparken 13, DK-2100 Copenhagen ?, Denmark, DK
Department of Endocrinology, Herlev Hospital, Copenhagen, Denmark, DK
Department of Medical Physiology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark, DK
Abstract: Acute and repeated exposure for 8–13 consecutive days to exercise in humid heat was studied. Twelve fit subjects exercised at 150 W [45% of maximum O2 uptake (V.O2,max)] in ambient conditions of 35°C and 87% relative humidity which resulted in exhaustion after 45 min. Average core temperature reached 39.9 ± 0.1°C, mean skin temperature (T– sk) was 37.9 ± 0.1°C and heart rate (HR) 152 ± 6 beats min–1 at this stage. No effect of the increasing core temperature was seen on cardiac output and leg blood flow (LBF) during acute heat stress. LBF was 5.2 ± 0.3 l min–1 at 10 min and 5.3 ± 0.4 l min–1 at exhaustion (n = 6). After acclimation the subjects reached exhaustion after 52 min with a core temperature of 39.9 ± 0.1°C, T– sk 37.7 ± 0.2°C, HR 146 ± 4 beats min–1. Acclimation induced physiological adaptations, as shown by an increased resting plasma volume (3918 ± 168 to 4256 ± 270 ml), the lower exercise heart rate at exhaustion, a 26% increase in sweating rate, lower sweat sodium concentration and a 6% reduction in exercise V.O2. Neither in acute exposure nor after acclimation did the rise of core temperature to near 40°C affect metabolism and substrate utilization. The physiological adaptations were similar to those induced by dry heat acclimation. However, in humid heat the effect of acclimation on performance was small due to physical limitations for evaporative heat loss. Received: 3 July 1996 / Received after revision: 26 September 1996 / Accepted: 7 January 1997
Keywords:  Core temperature  Cardiovascular system  Hormones  Metabolic responses  Heat stress
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号