首页 | 本学科首页   官方微博 | 高级检索  
检索        


BMP2Gene Therapy on the Repair of Bone Defects of Aged Rats
Authors:B Yue  B Lu  K R Dai  X L Zhang  C F Yu  J R Lou  T T Tang
Institution:(1) Department of Orthopedics, Ninth People’s Hospital, Shanghai Second Medical University, Shanghai, People’s Republic of China;(2) Health Science Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, Shanghai, People’s Republic of China;(3) Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
Abstract:Age-related decline in the number of mesenchymal stem cells (MSCs) and their reduced capability to differentiate osteogenically, along with diminished availability of growth factors, may be major factors accounting for reduced bone formation in the aging mammalian body. In the first part of the study, we compared the number of MSCs in bone marrow (BM) and the content of bone morphogenetic protein 2 (BMP2) in cortical bone tissue in juvenile, adult, and aged (1, 9, and 24 months, respectively) male rats. To assay the influence of aging on osteogenic differentiation ability, MSCs from the three age groups were transduced with the BMP2 gene. Following gene transduction, the production of BMP2 in culture media, expression of osteogenic proteins (e.g., alkaline phosphatase, type Iα1 collagen, osteopontin, and bone sialoprotein), as well as ectopic bone formation in athymic mice were compared. Results showed that the number of MSCs in BM as well as the content of BMP2 in cortical bone tissue decreased with age, but no significant differences between the three age groups were found with regard to production of BMP2 or capability of BMP2 gene-modified MSCs to differentiate osteogenically. The second part of the study applied BMP2 gene-modified autologous MSCs/β-tricalcium phosphate for repair of bone defects in aged rats with positive results. Our data indicate that the osteogenic potential of MSCs of aged rats can be restored following BMP2 gene transduction and that this technique may be a useful approach in the future planning of gene therapy for age-related osteoporotic fractures.
Keywords:Aging  BMP2  Mesenchymal stem cell  Gene therapy  Osteoporosis
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号