Polymorphisms in drug metabolism genes, smoking, and p53 mutations in breast cancer |
| |
Authors: | Van Emburgh Beth O Hu Jennifer J Levine Edward A Mosley Libyadda J Case L Douglas Lin Hui-Yi Knight Sommer N Perrier Nancy D Rubin Peter Sherrill Gary B Shaw Cindy S Carey Lisa A Sawyer Lynda R Allen Glenn O Milikowski Clara Willingham Mark C Miller Mark Steven |
| |
Affiliation: | Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA. |
| |
Abstract: | Polymorphisms in phase I and phase II enzymes may enhance the occurrence of mutations at critical tumor suppressor genes, such as p53, and increase breast cancer risk by either increasing the activation or detoxification of carcinogens and/or endogenous estrogens. We analyzed polymorphisms in CYP1B1, GSTM1, GSTT1, and GSTP1 and p53 mutations in 323 breast tumor samples. Approximately 11% of patients exhibited mutations in p53. Women with mutations had a significantly younger age of diagnosis (P = 0.01) and a greater incidence of tumors classified as stage II or higher (P = 0.002). More women with mutations had a history of smoking (55%) compared to women without mutations (39%). Although none of the genotypes alone were associated with p53 mutations, positive smoking history was associated with p53 mutations in women with the GSTM1 null allele [OR = 3.54; 95% CI = 0.97-12.90 P = 0.06] compared to women with the wild-type genotype and smoking history [OR = 0.62, 95% CI = 0.19-2.07], although this association did not reach statistical significance. To test for gene-gene interactions, our exploratory analysis in the Caucasian cases suggested that individuals with the combined GSTP1 105 VV, CYP1B1 432 LV/VV, and GSTM1 positive genotype were more likely to harbor mutations in p53 [OR = 4.94; 95% CI = 1.11-22.06]. Our results suggest that gene-smoking and gene-gene interactions may impact the prevalence of p53 mutations in breast tumors. Elucidating the etiology of breast cancer as a consequence of common genetic polymorphisms and the genotoxic effects of smoking will enable us to improve the design of prevention strategies, such as lifestyle modifications, in genetically susceptible subpopulations. |
| |
Keywords: | breast cancer p53 polymorphisms drug metabolism |
本文献已被 PubMed 等数据库收录! |
|