Monte Carlo simulations of dose near a nonradioactive gold seed |
| |
Authors: | Chow James C L Grigorov Grigor N |
| |
Affiliation: | Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, ON N2G 1G3, Canada. james.chow@rmp.uhn.on.ca |
| |
Abstract: | The relative doses and hot/cold spot positions around a non-radioactive gold seed, irradiated by a 6 or 18 MV photon beam in water, were calculated using Monte Carlo simulation. Phase space files of 6 and 18 MV photon beams with a field size of 1 x 1 cm2 were generated by a Varian 21 EX linear accelerator using the EGSnrc and BEAMnrc code. The seed (1.2 x 1.2 x 3.2 mm3) was positioned at the isocenter in a water phantom (20 x 20 x 20 cm2) with source-to-axis distance = 100 cm. For the single beam geometry, the relative doses (normalized to the dose at 5 mm distance above the isocenter) at the upstream seed surface were calculated to be 1.64 and 1.56 for the 6 and 18 MV beams respectively when the central beam axis (CAX) is parallel to the width of the seed. These doses were slightly higher than those (1.58 and 1.52 for 6 and 18 MV beams respectively) calculated when the CAX is perpendicular to the width of the seed. Compared to the relative dose profiles with the same beam geometry without the seed in the water phantom, the presence of the seed affects the dose distribution at about 3 mm distance beyond both the upstream and downstream seed surface. For a pair of opposing beams with equal and unequal beam weight, the hot and cold spots of both opposing beams were mixed. For a 360 degree photon arc around the longitudinal axis of the seed, the relative dose profile along the width of the seed was similar to that of the opposing beam pair, except the former geometry has a larger dose gradient near the seed surface. In this study, selected results from our simulation were compared to previous measurements using film dosimetry. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|