首页 | 本学科首页   官方微博 | 高级检索  
检索        


Patterned networks of mouse hippocampal neurons on peptide-coated gold surfaces
Authors:Heller Daniel A  Garga Veronika  Kelleher Keith J  Lee Tai-Chou  Mahbubani Sunil  Sigworth Laura A  Lee T Randall  Rea Michael A
Institution:Center for Material Chemistry, Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA.
Abstract:Patterned networks of hippocampal neurons were generated on peptide-coated gold substrates prepared by microscope projection photolithography and microcontact printing. A 19 amino acid peptide fragment of laminin A (PA22-2) that includes the IKVAV cell adhesion domain was used to direct patterns of cell adhesion in primary culture. Microscale grid patterns of peptide were deposited on gold-coated glass cover slips by soft lithography using "stamps" fashioned from polydimethylsiloxane. Strong coordination bonding between gold atoms on the surface and the sulfur atoms of the N-terminal cysteine residues supported stable adhesion of the peptide, which was confirmed by immunofluorescence using anti-IKVAV antiserum. Dispersed hippocampal cells isolated from neonatal mouse pups were grown on peptide-patterned gold substrates for 7 days. Neurons preferentially adhered to peptide-coated regions of the gold surface and restricted their processes to the peptide patterns. Whole cell recordings of neurons grown in patterned arrays revealed an average membrane potential of -50 mV, as well as the presence of voltage-gated ion conductances. Peptide-modified gold surfaces serve as convenient and effective substrates for growing ordered neural networks that are compatible with existing multi-electrode array recording technology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号