首页 | 本学科首页   官方微博 | 高级检索  
检索        


Peptidergic contribution to posttetanic potentiation at a central synapse of aplysia
Authors:Koh Hae-Young  Weiss Klaudiusz R
Institution:Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
Abstract:Posttetanic potentiation (PTP)-like phenomena appear to be mediated by a variety of mechanisms. Although neuropeptides are located in a large number of neurons and many neuropeptides, like PTP, can enhance synaptic transmission, there is a paucity of studies indicating that peptides may actually participate in PTP. Here, we utilize a single central synapse in the feeding circuit of Aplysia to investigate a possible peptidergic contribution to PTP in the CNS. The cholinergic command-like interneuron, cerebral-buccal interneuron 2 (CBI-2), contains two neuropeptides, feeding circuit activating peptide (FCAP) and cerebral peptide 2 (CP2). Previous studies showed that tetanic prestimulation or repeated stimulation of CBI-2, as well as perfusion of FCAP and CP2, increase the size of the cholinergic excitatory postsynaptic potentials (EPSPs) that CBI-2 evokes in the motoneurons B61/62 and shorten the latency to initiate B61/62 firing in response to CBI-2 stimulation. We used temperature-dependent suppression of peptide release and occlusion experiments to examine the possible contribution of FCAP and CP2 to PTP at the CBI-2 to B61/62 synapse. When peptide release was suppressed, perfusion of exogenous peptides increased the size of posttetanic EPSPs. In contrast, when peptide release was not suppressed, exogenous peptides did not enhance the size of posttetanic EPSPs, thus indicating occlusion. Temperature manipulation and occlusion experiments also indicated that peptides extend PTP duration. This peptide-dependent prolongation of PTP has functional consequences in that it extends the duration of time during which the latency to initiate B61/62 firing in response to CBI-2 stimulation is shortened.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号