首页 | 本学科首页   官方微博 | 高级检索  
     

基于优化后向传播神经网络的基础心音分类
引用本文:许春冬,龙清华. 基于优化后向传播神经网络的基础心音分类[J]. 中国医学物理学杂志, 2020, 37(9): 1181-1187. DOI: 10.3969/j.issn.1005-202X.2020.09.019
作者姓名:许春冬  龙清华
作者单位:江西理工大学信息工程学院,江西赣州341000
摘    要:针对后向传播(BP)神经网络高度依赖初始权值、收敛慢且易陷入局部极值,标准人工蜂群算法开发能力弱、局部搜索能力差等问题,提出一种基于改进人工蜂群算法优化BP神经网络的分类方法。引入自适应和全局最优策略改进人工蜂群算法中跟随蜂蜜源全局搜索、概率选择算法,使用当前迭代的最优解来提高其开发能力。此外,利用混沌系统产生初始种群,以增强人工蜂群算法全局收敛性。最后,将本文算法应用到基础心音分类。结果表明本文算法较经典分类算法分类准确率有较大的提升。梅尔频率倒谱特征参数下,本文算法的分类准确率达到94%以上。

关 键 词:人工蜂群算法  后向传播神经网络  混沌系统  基础心音分类

Fundamental heart sound classification based on optimized back-propagation neural network
XU Chundong,LONG Qinghua. Fundamental heart sound classification based on optimized back-propagation neural network[J]. Chinese Journal of Medical Physics, 2020, 37(9): 1181-1187. DOI: 10.3969/j.issn.1005-202X.2020.09.019
Authors:XU Chundong  LONG Qinghua
Affiliation:School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Abstract:For solving the problems of back-propagation (BP) neural network such as highly relying on initial weights, slowconvergence and easily falling into local extremum, and the weak development capability and poor local search ability ofstandard artificial bee colony (ABC) algorithm, a classification method based on improved ABC algorithm is proposed tooptimize BP neural network. The adaptive and global optimal strategies are introduced to improve the global search andprobability selection algorithm of honey sources in ABC algorithm, and the optimal solution of the current iteration is used toimprove the development capability. In addition, chaotic systems are used to generate initial populations, thus enhancing theglobal convergence of ABC algorithm. Finally, the proposed algorithm is applied in fundamental heart sound recognition. Theexperimental results show that the classification accuracy of the proposed algorithm is superior to that of the classicalclassification algorithms. Based on Mel-scale frequency cepstral coefficients, the proposed algorithm can achieve aclassification accuracy rate above 94%.
Keywords:artificial bee colony algorithm back-propagation neural network chaotic system fundamental heart soundclassification
本文献已被 CNKI 等数据库收录!
点击此处可从《中国医学物理学杂志》浏览原始摘要信息
点击此处可从《中国医学物理学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号