首页 | 本学科首页   官方微博 | 高级检索  
检索        


Optimal treatment timing to attenuate neuronal apoptosis via Bcl-2 gene transfer in vitro and in vivo
Authors:Yukawa Yasutsugu  Lou Jueren  Fukui Naoshi  Lenke Lawrence G
Institution:Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Abstract:Although Bcl-2 gene transfer can rescue cells from neuronal apoptosis, the temporal relationship between treatment initiation time and effectiveness is unknown. The purpose of present study is to investigate the optimal treatment timing of Bcl-2 gene transfer in saving cells after neural insults. Bcl-2 gene transfer was mediated by recombinant adenovirus carrying human bcl-2 oncogene (Adv-Bcl-2). Adenovirus carrying beta-galactosidase gene (Adv-Bgal) served as a control. A serum withdrawal model of NSC-19 cell culture was used to induce apoptosis in vitro. At various time points before or after serum withdrawal, the motor neuron cells (NSC-19 cells) were infected with either Adv-Bcl-2 or Adv-Bgal. At 72 h after serum withdrawal, the number of apoptotic cells and DNA fragmentation were examined to evaluate the effect of Bcl-2 gene transfer. A weight-drop spinal cord injury model in rats was used as in vivo model. At various time points before or after experimental spinal injury, virus solution, including Adv-Bcl-2 or Adv-Bgal, was injected at the spinal cord in injured rats. The degree of cord injury was measured at 72 h after injury. TUNEL staining was performed to count cells that have undergone DNA damage in sections. Bcl-2 protein overexpression was confirmed by immunostaining both in vitro and in vivo model. In vitro, Adv-Bcl-2 infection produced a less prominent DNA laddering pattern. Adv-Bcl-2 infection between 24 h before and 4 h after serum withdrawal significantly reduced the apoptotic cell death. In vivo Adv-Bcl-2 injection immediately after injury effectively suppressed the injury lesion by blocking DNA fragmentation and irreversible cellular injury. Our data demonstrate that earlier initiation of Bcl-2 gene transfer can produce improved neural cell rescue following neural insults. These results stress important temporal considerations in future gene therapy strategies for spinal cord injury.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号