首页 | 本学科首页   官方微博 | 高级检索  
检索        


Neurotrophins alter the numbers of neurotransmitter-ir mature vagal/glossopharyngeal visceral afferent neurons in vitro
Authors:Helke C J  Verdier-Pinard D
Institution:Department of Pharmacology and Neuroscience Program, Uniformed Services University of the Health Science, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA. chelke@usuhs.mil
Abstract:Mature nodose and petrosal ganglia neurons (placodally derived afferent neurons of the vagal and glossopharyngeal nerves) contain TrkA and TrkC, and transport specific neurotrophins nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4)]. This study evaluated neurotrophin influences on the presence of neuropeptides and/or neurotransmitter enzymes in these visceral sensory neurons. NGF, NT-3 and NT-4 (10-100 ng/ml) were applied (5 days) to dissociated, enriched, cultures of mature nodose/petrosal ganglia neurons, and the neurons processed for tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neurofilament (NF-200) immunocytochemistry. Addition of NGF to nodose/petrosal ganglia neuron-enriched cultures significantly increased the number of TH-immunoreactive (ir) neurons, decreased the number of VIP-ir neurons in the cultures, and did not affect the numbers of CGRP-ir neurons. The addition of an NGF neutralizing antibody attenuated the effects of NGF on TH and VIP-ir neurons. NT-3 increased the number of VIP-ir neurons in the nodose/petrosal ganglia cultures and did not alter the numbers of TH-, or CGRP-ir neurons. The addition of an NT-3 neutralizing antibody attenuated the effects of NT-3 on VIP-ir neurons. NT-4 had no significant effects on the numbers of TH, VIP and CGRP-ir neurons. The absence of neurotrophin-induced changes in the numbers of NF-200-ir neurons in culture showed the lack of neurotrophin-mediated changes in survival of mature vagal afferent neurons. These data demonstrate that specific neurotrophins influence the numbers of neurons labeled for specific neurochemicals in nodose/petrosal ganglia cultures. These data, coupled with previous evidence for the presence of TrkA and TrkC mRNA and of the retrograde transport of NGF and NT-3, suggest important roles for NGF and NT-3 in the maintenance of transmitter phenotype of these mature visceral afferent neurons.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号