首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络生成虚拟平扫CT图像
引用本文:高留刚,李春迎,陆正大,谢凯,林涛,眭建锋,倪昕晔. 基于卷积神经网络生成虚拟平扫CT图像[J]. 中国医学影像技术, 2022, 38(3): 440-444
作者姓名:高留刚  李春迎  陆正大  谢凯  林涛  眭建锋  倪昕晔
作者单位:南京医科大学附属常州市第二人民医院放疗科, 江苏 常州 213003;南京医科大学医学物理研究中心, 江苏 常州 213003;常州市医学物理重点实验室, 江苏 常州 213003;南京医科大学附属常州市第二人民医院放疗科, 江苏 常州 213003;南京医科大学医学物理研究中心, 江苏 常州 213003;常州市医学物理重点实验室, 江苏 常州 213003;南京医科大学生物医学工程与信息学院, 江苏 南京 211166
基金项目:江苏省卫生健康委2020年度医学科研面上项目(M2020006)、常州市第十六批科技计划(应用基础研究)项目(CJ20200099)、常州市卫生健康青苗人才培养工程(CZQM2020075)。
摘    要:目的 针对增强CT图像,采用U-Net卷积神经网络(CNN)方法生成虚拟平扫CT图像,比较其与增强CT和实际平扫CT图像的差异。方法 纳入50例于同次检查中接受平扫及增强CT扫描患者,记录其容积CT剂量指数(CTDIvol)。以40例CT数据为训练集,输入增强CT图像后,以对应的平扫CT图像作为输出,用于训练U-Net神经网络;以其余10例数据作为测试集,通过训练完成的U-Net生成虚拟平扫CT图像。比较虚拟平扫CT与实际平扫及增强CT的图像及参数差异。结果 50例平扫CT平均CTDIvol为(11.67±0.51) mGy,增强CT平均CTDIvol为(13.46±0.76) mGy;采用虚拟平扫CT图像可使平均辐射剂量减少46.44%。增强与平扫CT图像的平均绝对偏差(MAE)为(32.28±2.64) HU,结构相似度(SSIM)为0.82±0.05;虚拟平扫CT与平扫CT图像的MAE为(6.72±1.31) HU,SSIM为0.98±0.02。虚拟平扫CT与平扫CT图像所示主要组织的CT值差异均无统计学意义(P均>0.05)。结论 针对增强CT基于U-Net神经网络生成的虚拟平扫CT图像与实际平扫CT图像的一致性较好,可由此减少CT扫描次数、降低辐射剂量。

关 键 词:胸部  神经网络,计算机  体层摄影术,X线计算机
收稿时间:2020-07-08
修稿时间:2021-10-29

Generation of virtual plain CT images based on convolutional neural network
GAO Liugang,LI Chunying,LU Zhengd,XIE Kai,LIN Tao,SUI Jianfeng,NI Xinye. Generation of virtual plain CT images based on convolutional neural network[J]. Chinese Journal of Medical Imaging Technology, 2022, 38(3): 440-444
Authors:GAO Liugang  LI Chunying  LU Zhengd  XIE Kai  LIN Tao  SUI Jianfeng  NI Xinye
Affiliation:Department of Radiotherapy, Changzhou No. 2. People''s Hospital, Affiliated to Nanjing Medical University, Changzhou 213003, China;Research Center for Medical Physics, Nanjing Medical University, Changzhou 213003, China;Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China;Department of Radiotherapy, Changzhou No. 2. People''s Hospital, Affiliated to Nanjing Medical University, Changzhou 213003, China;Research Center for Medical Physics, Nanjing Medical University, Changzhou 213003, China;Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China;Academy of Biomedical Engineering and information, Nanjing Medical University, Nanjing 211166, China
Abstract:Objective To generate virtual plain CT images from enhanced CT using U-Net convolution neural network (CNN), and to compare the difference between virtual plain CT images, enhanced CT images and actual plain CT images. Methods CT images of 50 patients underwent both plain and enhanced CT scanning in the same examination were included, and the volume CT dose index (CTDIvol) were recorded. Taken 40 cases as training set, the enhanced CT images were inputted, and the corresponding plain CT images were outputted to train U-Net neural network. Taken the rest 10 cases as test set, virtual plain CT images were generated through the trained U-Net. Then the virtual plain CT images were compared with actual plain CT images and enhanced CT images, and the parameters were also compared. Results The mean CTDIvol of 50 cases for plain CT scanning was (11.67±0.51)mGy, while for enhanced CT was (13.46±0.76)mGy. Virtual plain CT could reduce the average radiation dose by 46.44%. The mean absolute error (MAE) between enhanced and plain scan CT was (32.28±2.64)HU, and the structural similarity (SSIM) was 0.82±0.05. MAE between virtual plain CT and actual plain CT images was (6.72±1.31)HU, and SSIM was 0.98±0.02. There was no significant difference of the mean CT value of major organs between virtual plain CT and actual plain CT images (all P>0.05). Conclusion Based on U-Net neural network, virtual plain CT images generated by enhanced CT were consistent with actual plain scan CT images, hence reducing times of scanning and radiation dose.
Keywords:thorax  neural networks, computer  tomography, X-ray computed
点击此处可从《中国医学影像技术》浏览原始摘要信息
点击此处可从《中国医学影像技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号