Abstract: | As the prolonged metabolic clearance rate of insulin in chronic uremia cannot be entirely explained by impaired removal and degradation of insulin by the kidney, we set out to determine whether prolonged uremia depresses other major sites of insulin degradation. The study was conducted with livers and skeletal muscle obtained from normal control rats and uremic rats 4 weeks after 80% nephrectomy. Despite a significant difference between renal function in the control and uremic rats (BUN, 18 vs. 46 mg/dl), there was no significant difference in the clearance of insulin by isolated uremic or control livers perfused with a bloodless medium. Similarly, the 125I-insulin degrading activity of liver homogenates was not depressed by uremia. In contrast, binding and degradation by uremic liver cell membranes was significantly reduced to 58% and 85% of the controls, respectively. Degradation by homogenates of skeletal muscle and by intact epitrochlaris muscle was significantly less in uremics than in controls. These results indicate that chronic uremia depresses skeletal muscle insulin degradation but not hepatic insulin removal or degradation despite a decrease in insulin binding and degradation by liver plasma membranes. It thus appears that depression of insulin degradation by muscle may contribute to the prolonged insulin metabolic clearance rate seen in chronic uremia. Furthermore, it is possible that the impaired binding of insulin to liver membranes may play a role in the insulin resistance of uremia. |