首页 | 本学科首页   官方微博 | 高级检索  
检索        


In Vitro Evaluation of Microparticles and Polymer Gels for Use as Nasal Platforms for Protein Delivery
Authors:Witschi  Claudia  Mrsny  Randall J
Institution:(1) Drug Delivery Biology Group, Department of Pharmaceutical Research and Development, Genentech Inc., South San Francisco, California;(2) FibroGen, 225 Gateway Blvd., South San Francisco, California
Abstract:Purpose. Nasal delivery of protein therapeutics can be compromised by the brief residence time at this mucosal surface. Some bioadhesive polymers have been suggested to extend residence time and improve protein uptake across the nasal mucosa. We examined several potential polymer platforms for their in vitro protein release, relative bioadhesive properties and induction of cytokine release from respiratory epithelium. Methods. Starch, alginate, chitosan or Carbopol® microparticles, containing the test protein bovine serum albumin (BSA), were prepared by spray-drying and characterized by laser diffraction and scanning electron microscopy. An open-membrane system was used to determine protein release profiles and confluent, polarized Calu-3 cell sheets were used to evaluate relative bioadhesion, enhancement of protein transport and induction of cytokine release in vitro. Results. All spray-dried microparticles averaged 2–4 mgrm in diameter. Loaded BSA was not covalently aggregated or degraded. Starch and alginate microparticles released protein more rapidly but were less adhesive to polarized Calu-3 cells than chitosan and Carbopol® microparticles. Protein transport across polarized Calu-3 cells was enhanced from Carbopol® gels and chitosan microparticles. A mixture of chitosan microparticles with lysophosphatidylcholine increased protein transport further. Microparticles prepared from either chitosan or starch microparticles, applied apically, induced the basolateral release of IL-6 and IL-8 from polarized Calu-3 cells. Release of other cytokines, such as IL-lbeta, TNF-agr, GM-CSF and TGF-beta, were not affected by an apical exposure to polymer formulations. Conclusions. We have described two systems for the in vitro assessment of potential nasal platforms for protein delivery. Based upon these assessments, Carbopol® gels and chitosan microparticles provided the most desirable characteristics for protein therapeutic and protein antigen delivery, respectively, of the formulations examined.
Keywords:microparticles  in vitro release  nasal delivery  bioadhesive polymers  Calu-3 cells
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号