Abstract: | GnRH has been shown to modulate the concentration of its own pituitary receptors (GnRH-R), and changes in GnRH-R during the rat estrous cycle may reflect changes in GnRH secretion. To examine the relationship between GnRH and GnRH-R in female rats, we measured GnRH-R and serum gonadotropin responses to pulsatile GnRH in restrained ovariectomized (OVX) and ovariectomized estradiol-implanted (OVX-E2) rats. In addition, we examined the effects of suppression of serum PRL. Pulsatile injections of GnRH (10-250 ng/pulse) given every 30 min for 24 or 48 h did not increase GnRH-R in OVX or OVX-E2 rats compared to that in saline controls (246 +/- 27 fmol/mg). Bromocriptine treatment (2 mg/day) had no effect on GnRH-R in OVX animals. In contrast, OVX-E2 rats treated with bromocriptine showed significantly increased GnRH-R (500 +/- 43 fmol/mg) in response to GnRH injections. When ovine PRL was administered to bromocriptine-treated OVX-E2 rats, the GnRH induced rise in GnRH-R was abolished. Gonadotropin responses to GnRH were not correlated with changes in GnRH-R. In OVX animals, LH was only elevated in response to 250-ng pulses of GnRH. In OVX-E2 animals, basal LH was increased by all doses of GnRH, and acute responses to 50- and 250-ng pulses were observed. Bromocriptine treatment resulted in increased LH sensitivity to GnRH in OVX rats, but did not further enhance the responses in OVX-E2 animals. We conclude that in female rats, the presence of both E2 and a low serum PRL level is necessary for GnRH to increase GnRH-R, and the interaction of these factors may be involved in the regulation of GnRH-R during the estrous cycle. |